Edit

Share via


System.Collections.Generic.List<T> class

This article provides supplementary remarks to the reference documentation for this API.

The List<T> class is the generic equivalent of the ArrayList class. It implements the IList<T> generic interface by using an array whose size is dynamically increased as required.

You can add items to a List<T> by using the Add or AddRange methods.

The List<T> class uses both an equality comparer and an ordering comparer.

  • Methods such as Contains, IndexOf, LastIndexOf, and Remove use an equality comparer for the list elements. The default equality comparer for type T is determined as follows. If type T implements the IEquatable<T> generic interface, then the equality comparer is the Equals(T) method of that interface; otherwise, the default equality comparer is Object.Equals(Object).

  • Methods such as BinarySearch and Sort use an ordering comparer for the list elements. The default comparer for type T is determined as follows. If type T implements the IComparable<T> generic interface, then the default comparer is the CompareTo(T) method of that interface; otherwise, if type T implements the nongeneric IComparable interface, then the default comparer is the CompareTo(Object) method of that interface. If type T implements neither interface, then there is no default comparer, and a comparer or comparison delegate must be provided explicitly.

The List<T> is not guaranteed to be sorted. You must sort the List<T> before performing operations (such as BinarySearch) that require the List<T> to be sorted.

Elements in this collection can be accessed using an integer index. Indexes in this collection are zero-based.

.NET Framework only: For very large List<T> objects, you can increase the maximum capacity to 2 billion elements on a 64-bit system by setting the enabled attribute of the <gcAllowVeryLargeObjects> configuration element to true in the run-time environment.

List<T> accepts null as a valid value for reference types and allows duplicate elements.

For an immutable version of the List<T> class, see ImmutableList<T>.

Performance considerations

In deciding whether to use the List<T> or ArrayList class, both of which have similar functionality, remember that the List<T> class performs better in most cases and is type safe. If a reference type is used for type T of the List<T> class, the behavior of the two classes is identical. However, if a value type is used for type T, you need to consider implementation and boxing issues.

If a value type is used for type T, the compiler generates an implementation of the List<T> class specifically for that value type. That means a list element of a List<T> object does not have to be boxed before the element can be used, and after about 500 list elements are created, the memory saved by not boxing list elements is greater than the memory used to generate the class implementation.

Make certain the value type used for type T implements the IEquatable<T> generic interface. If not, methods such as Contains must call the Object.Equals(Object) method, which boxes the affected list element. If the value type implements the IComparable interface and you own the source code, also implement the IComparable<T> generic interface to prevent the BinarySearch and Sort methods from boxing list elements. If you do not own the source code, pass an IComparer<T> object to the BinarySearch and Sort methods.

It's to your advantage to use the type-specific implementation of the List<T> class instead of using the ArrayList class or writing a strongly typed wrapper collection yourself. That's because your implementation must do what .NET does for you already, and the .NET runtime can share common intermediate language code and metadata, which your implementation cannot.

F# considerations

The List<T> class is used infrequently in F# code. Instead, Lists, which are immutable, singly-linked lists, are typically preferred. An F# List provides an ordered, immutable series of values, and is supported for use in functional-style development. When used from F#, the List<T> class is typically referred to by the ResizeArray<'T> type abbreviation to avoid naming conflicts with F# Lists.

Examples

The following example demonstrates how to add, remove, and insert a simple business object in a List<T>.

using System;
using System.Collections.Generic;

// Simple business object. A PartId is used to identify the type of part
// but the part name can change.
public class Part : IEquatable<Part>
{
    public string PartName { get; set; }

    public int PartId { get; set; }

    public override string ToString()
    {
        return "ID: " + PartId + "   Name: " + PartName;
    }
    public override bool Equals(object obj)
    {
        if (obj == null) return false;
        Part objAsPart = obj as Part;
        if (objAsPart == null) return false;
        else return Equals(objAsPart);
    }
    public override int GetHashCode()
    {
        return PartId;
    }
    public bool Equals(Part other)
    {
        if (other == null) return false;
        return (this.PartId.Equals(other.PartId));
    }
    // Should also override == and != operators.
}

public class Example
{
    public static void Main()
    {
        // Create a list of parts.
        List<Part> parts =
        [
            // Add parts to the list.
            new Part() { PartName = "crank arm", PartId = 1234 },
            new Part() { PartName = "chain ring", PartId = 1334 },
            new Part() { PartName = "regular seat", PartId = 1434 },
            new Part() { PartName = "banana seat", PartId = 1444 },
            new Part() { PartName = "cassette", PartId = 1534 },
            new Part() { PartName = "shift lever", PartId = 1634 },
        ];

        // Write out the parts in the list. This will call the overridden ToString method
        // in the Part class.
        Console.WriteLine();
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }

        // Check the list for part #1734. This calls the IEquatable.Equals method
        // of the Part class, which checks the PartId for equality.
        Console.WriteLine("\nContains(\"1734\"): {0}",
        parts.Contains(new Part { PartId = 1734, PartName = "" }));

        // Insert a new item at position 2.
        Console.WriteLine("\nInsert(2, \"1834\")");
        parts.Insert(2, new Part() { PartName = "brake lever", PartId = 1834 });

        //Console.WriteLine();
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }

        Console.WriteLine("\nParts[3]: {0}", parts[3]);

        Console.WriteLine("\nRemove(\"1534\")");

        // This will remove part 1534 even though the PartName is different,
        // because the Equals method only checks PartId for equality.
        parts.Remove(new Part() { PartId = 1534, PartName = "cogs" });

        Console.WriteLine();
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }
        Console.WriteLine("\nRemoveAt(3)");
        // This will remove the part at index 3.
        parts.RemoveAt(3);

        Console.WriteLine();
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }

        /*

         ID: 1234   Name: crank arm
         ID: 1334   Name: chain ring
         ID: 1434   Name: regular seat
         ID: 1444   Name: banana seat
         ID: 1534   Name: cassette
         ID: 1634   Name: shift lever

         Contains("1734"): False

         Insert(2, "1834")
         ID: 1234   Name: crank arm
         ID: 1334   Name: chain ring
         ID: 1834   Name: brake lever
         ID: 1434   Name: regular seat
         ID: 1444   Name: banana seat
         ID: 1534   Name: cassette
         ID: 1634   Name: shift lever

         Parts[3]: ID: 1434   Name: regular seat

         Remove("1534")

         ID: 1234   Name: crank arm
         ID: 1334   Name: chain ring
         ID: 1834   Name: brake lever
         ID: 1434   Name: regular seat
         ID: 1444   Name: banana seat
         ID: 1634   Name: shift lever

         RemoveAt(3)

         ID: 1234   Name: crank arm
         ID: 1334   Name: chain ring
         ID: 1834   Name: brake lever
         ID: 1444   Name: banana seat
         ID: 1634   Name: shift lever


     */
    }
}

The following example demonstrates several properties and methods of the List<T> generic class of type string. (For an example of a List<T> of complex types, see the Contains method.)

The parameterless constructor is used to create a list of strings with the default capacity. The Capacity property is displayed and then the Add method is used to add several items. The items are listed, and the Capacity property is displayed again, along with the Count property, to show that the capacity has been increased as needed.

The Contains method is used to test for the presence of an item in the list, the Insert method is used to insert a new item in the middle of the list, and the contents of the list are displayed again.

The default Item[] property (the indexer in C#) is used to retrieve an item, the Remove method is used to remove the first instance of the duplicate item added earlier, and the contents are displayed again. The Remove method always removes the first instance it encounters.

The TrimExcess method is used to reduce the capacity to match the count, and the Capacity and Count properties are displayed. If the unused capacity had been less than 10 percent of total capacity, the list would not have been resized.

Finally, the Clear method is used to remove all items from the list, and the Capacity and Count properties are displayed.

List<string> dinosaurs = new List<string>();

Console.WriteLine("\nCapacity: {0}", dinosaurs.Capacity);

dinosaurs.Add("Tyrannosaurus");
dinosaurs.Add("Amargasaurus");
dinosaurs.Add("Mamenchisaurus");
dinosaurs.Add("Deinonychus");
dinosaurs.Add("Compsognathus");
Console.WriteLine();
foreach (string dinosaur in dinosaurs)
{
    Console.WriteLine(dinosaur);
}

Console.WriteLine("\nCapacity: {0}", dinosaurs.Capacity);
Console.WriteLine("Count: {0}", dinosaurs.Count);

Console.WriteLine("\nContains(\"Deinonychus\"): {0}",
    dinosaurs.Contains("Deinonychus"));

Console.WriteLine("\nInsert(2, \"Compsognathus\")");
dinosaurs.Insert(2, "Compsognathus");

Console.WriteLine();
foreach (string dinosaur in dinosaurs)
{
    Console.WriteLine(dinosaur);
}

// Shows accessing the list using the Item property.
Console.WriteLine("\ndinosaurs[3]: {0}", dinosaurs[3]);

Console.WriteLine("\nRemove(\"Compsognathus\")");
dinosaurs.Remove("Compsognathus");

Console.WriteLine();
foreach (string dinosaur in dinosaurs)
{
    Console.WriteLine(dinosaur);
}

dinosaurs.TrimExcess();
Console.WriteLine("\nTrimExcess()");
Console.WriteLine("Capacity: {0}", dinosaurs.Capacity);
Console.WriteLine("Count: {0}", dinosaurs.Count);

dinosaurs.Clear();
Console.WriteLine("\nClear()");
Console.WriteLine("Capacity: {0}", dinosaurs.Capacity);
Console.WriteLine("Count: {0}", dinosaurs.Count);

/* This code example produces the following output:

Capacity: 0

Tyrannosaurus
Amargasaurus
Mamenchisaurus
Deinonychus
Compsognathus

Capacity: 8
Count: 5

Contains("Deinonychus"): True

Insert(2, "Compsognathus")

Tyrannosaurus
Amargasaurus
Compsognathus
Mamenchisaurus
Deinonychus
Compsognathus

dinosaurs[3]: Mamenchisaurus

Remove("Compsognathus")

Tyrannosaurus
Amargasaurus
Mamenchisaurus
Deinonychus
Compsognathus

TrimExcess()
Capacity: 5
Count: 5

Clear()
Capacity: 5
Count: 0
 */